

STRUCTURE	:	Silicon Monolithic Integrated Circuit
PRODUCT NAME	:	DC/DC converter IC for camera module for car navigation system
MODEL NAME	:	B D 8 6 7 1 K N
BLOCK DIAGRAM ⊚FEATURES :	• +12V o • -5V ou	Fig 2 output Step down DC/DC converter for asynchronous rectification system output Boost DC/DC converter for asynchronous rectification system tput Voltage control charge pump for reversing type for negative voltage

- Soft start function
- Building in low voltage and over voltage protection function
- Building in terminal RT OPEN/Short protection
- The frequency can be set by external resistance
- · Concentrated protection control with built-in sequencer
- VQFN-28 package

⊘ABSOLUTE MAXIMUM RATING: (Ta=25℃)

Parameter	Symbol		Limits	6	Unit
VIN supply voltage	VIN	-0.3	~	+18.0	V
PVIN supply voltage	PVIN	-0.3	~	VIN	V
Input terminal voltage 1 ^{*1}	VIN1	-0.3	~	VIN	V
Input terminal voltage 2*2	VIN2	-0.3	~	+20.0	V
Input terminal voltage 3 ^{*3}	VIN3	-0.3	~	+20.0	V
Input terminal voltage 4*4	VIN4	-10.0	~	+0.3	V
Output terminal voltage 1*5	VOUT1	-0.3	~	VIN	V
Output terminal voltage 2*6	VOUT2	-0.3	~	PVIN	V
Output terminal voltage 3*7	VOUT3	-0.3	~	+20.0	V
Output terminal voltage 4*8	VOUT4	-0.3	~	VIN3*10	V
Output terminal voltage 5*9	VOUT5	VIN4	~	+0.3	V
Power dissipation	Pd		0.725*	11	W
Operating temperature	Topr	-40	~	+85	°C
Storage temperature	Tstg	-55	~	+150	°C

*1 FB12, SS12, TEST1, TEST2, TEST3, RT, CTL1, CTL2, CTL3, SS33, V33 terminal voltage *2 V12 terminal voltage *3 V12IN terminal voltage

*4 MV8 terminal voltage *5 FC12 terminal voltage *6 SW33 terminal voltage *7 SW12 terminal voltage

*8 V8、CP terminal voltage *9 MV5、CM terminal voltage

*10 V8 terminal voltage ABSOLUTE MAXIMUM RATING is VIN3 or 10V is low. Between V8 terminal voltage and MV5 terminal voltage ABSOLUTE MAXIMUM RATING is 15V.

*11 70mmx70mm, thickness1.6mm, less than 3% share of copper foil when implementing glass epoxy board. Operating at higher than Ta=25°C, 5.8mW shall be reduced per 1

OPERATION CONDITION (Please set the power-supply voltage in consideration of a power dissipation.)

Parameter	Symbol	MIN	T	YΡ	1	MAX	Unit
VIN supply voltage	VIN	4.5	6	6.0	1	9.0	V

This product is not designed for protection against radioactive rays.

◎ ELECTRICAL CHARACTERISTICS

(Unless otherwise noted Ta=25°C, VIN=6.0V,PVIN=6.0V,CTL1,2,3=6.0V,GND=0V)

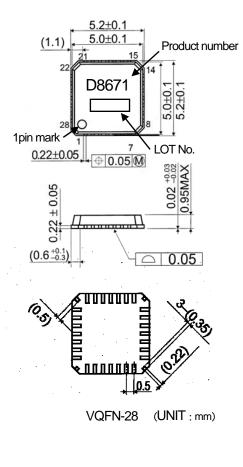
Parameter	Symbol	spe MIN	ecification TYP	value MAX	UNIT	Condition
VIN, PVIN Circuit current 1	I _{Q1}	-	0	50	μA	CTL1,2,3=0V
VIN, PVIN Circuit current 2	lQ2	-	4.1	6.1	mA	CTL1,2,3=VIN、 V _{V33} =3.5V V _{V12} =13.0V 、V _{V12IN} =12.0V
V12IN Circuit current	l _{Q³}	-	2.3	3.3	mA	CTL1,2,3=VIN、 V _{V33} =3.5V V _{V12} =13.0V 、V _{V12N} =12.0V
Range of DC/DC converter oscillation frequency setting	F _{OSC}	500	1000	1200	kHz	It is possible to set it with the terminal RT.
<step-down 3.3v="" converter="" dc="" of="" output="" part=""></step-down>	000					
3.3V output voltage	V ₀₃₃	3.234	3.300	3.366	V	
Terminal SS Discharge resistance	R _{V33DIS}	270	390	500	Ω	CTL1,2,3=0V
Terminal SS Charging current	I _{SS33}	-4.0	-2.5	-1.0	μA	V _{SS33} =1.0V
Terminal SS Threshold voltage	V _{SS33TH}	1.0	1.1	1.2	V	V _{SS33} voltage、V _{V33} =3.3V
Terminal SS Clamping voltage	VSS33CLM	1.6	1.9	2.2	v	
Terminal SS Standby voltage	V _{SS33CEM}	0.11	0.15	0.19	V	V _{SS33} voltage (L→H)
Terminal SS Standby voltage Maximum hysteresis error	V _{SS33STB_HYS}	5	50	100	mV	
Terminal SS Discharge resistance	Rss3Dis	4.9	7.0	9.1	kΩ	CTL1.2,3=6.0→0.0V
Terminal SS Protection circuit start voltage	V _{SS33PON}	1.0	1.1	1.2	V	V_{SS33} voltage (L \rightarrow H)
Terminal SS Protection circuit start voltage		1.0	1.1	1.2	v	
Maximum hysteresis error	V _{SS33PON_HYS}	10	100	200	mV	V _{SS33} voltage
Terminal V33 Low voltage detection voltage	V _{V33LVP}	1.11	1.32	1.53	V	V _{v33} voltage (H→L)
Terminal V33 Low voltage detection Maximum hysteresis error	V _{V33LVP_HYS}	41.2	412	824	mV	V _{v33} voltage
Terminal V33 Overvoltage detection voltage	V _{V33OVP}	4.45	4.95	5.45	V	V _{v33} voltage (L→H)
< Boost DC/DC converter of 12V output part >	V V330VP	4.40	4.90	5.45	v	
	V	44.70	40.00	10.01		
12V output voltage	V ₀₁₂	11.76	12.00	12.24	V	
Terminal V12 Discharge resistance	R _{V12DIS}	270	390	500	Ω	CTL1,2,3=0V
Terminal FC12 Clamping voltage H	V _{FC12H}	1.2	-	-	V	V _{v12} =10.5V
Terminal FC12 Clamping voltage L	V _{FC12L}	-	-	0.2	V	V _{V12} =13.5V
Terminal FC12 Sink current	FC12SINK	0.3	-	-	mA	$V_{V12}=13.5V, V_{FC12}=0.4V$
Terminal FC12 Source current	FC12SOURCE	-	-	-14	μA	V _{V12} =10.5V、V _{FC12} =1.4V
Terminal SS12 Charging current	I _{SS12}	-4.0	-2.5	-1.0	μA	V _{SS12} =1.0V
Terminal SS12 Threshold voltage	V _{SS12TH}	1.0	1.1	1.2	V	V _{SS12} voltage、V _{FB12} =0.8V
Terminal SS12 Clamping voltage	V _{SS12CLM}	1.6	1.9	2.2	V	
Terminal SS12 Standby voltage	V _{SS12STB}	0.11	0.15	0.19	V	V_{SS12} voltage (L \rightarrow H)
Terminal SS12 Standby voltage	V _{SS12STB_HYS}	5	50	100	mV	
Maximum hysteresis error						
Terminal SS12 Discharge resistance	R _{SS12DIS}	4.9	7.0	9.1	kΩ	CTL1,2,3=6.0→0.0V
Terminal SS12 Protection circuit start voltage	V _{SS12PON}	1.0	1.1	1.2	V	V_{SS12} voltage (L \rightarrow H)
Terminal SS12 Protection circuit start voltage Maximum hysteresis error	V _{SS12PON_HYS}	10	100	200	mV	V _{SS12} voltage
Terminal V12Low voltage detection voltage	V _{V12LVP}	4.0	4.8	5.6	V	V _{V12} voltage (H→L)
Terminal V12Low voltage detection		4.0	4.0	0.0	v	
Maximum hysteresis error	V _{V12LVP_HYS}	0.15	1.5	3.0	V	V _{v12} voltage
Terminal V12 Overvoltage detection voltage	V _{V12OVP}	16.2	18.0	19.8	V	V _{v12} voltage (L→H)
< -5V output reversing charge pump part >		•				
Terminal MV5 output voltage	V _{MV5}	-5.10	-5.00	-4.90	V	MV8=-8.0V
Terminal MV5 Discharge resistance	R _{MV5DIS}	200	320	430	Ω	CTL3=0V、V _{v8} =8.0V
Terminal MV5 Overvoltage detection voltage	V _{MV5OVP}	-8.25	-7.50	-6.75	V	V _{MV5} voltage、V _{V33} =3.3V
Terminal MV5 Protection circuit start voltage	V _{MV5PON}	-4.5	-3.5	-0.75	V	V_{MV5} voltage (H \rightarrow L), V_{V33} =3.3V
Terminal MV5 Low voltage detection voltage	V _{MV5PON}	-4.5	-2.0	-2.5	V	V_{MV5} voltage (L \rightarrow H), V_{V33} =3.3V
Terminal MV5 Low voltage detection	VMV5LVP_HYS	62.5	625	1250	mV	V _{MV5} voltage、V33=3.3V
Maximum hysteresis error	V MV5LVP_HYS	02.3	020	1200	mv	

 $\bullet V_{\text{V33}}$: V33 voltage, V_{VSS33} : SS33 voltage, V_{V12} : V12 voltage, V_{FC12} : FC12 voltage,

 $V_{SS12}: \quad SS12 \text{ voltage}, \quad V_{Mv5}: \quad MV5 \text{ voltage}, \quad V_{Mv8}: MV8 \text{ voltage}, \quad V_{v8}: V8 \text{ voltage}, \quad V_{v12IN}: V12IN \text{ voltage}$

•This product is not designed for protection against radioactive rays.

•The current ability must not exceed Pd.


ROHM

OPIN ASSIGNMENT

No.	Symbol	Description	No.	Symbol	Description
1	V12	12V output voltage detection terminal	15	TEST1	Test terminal 2(0V is connected and use it usually).
2	FB12	Error amplifier input terminal	16	SW33	3.3V coil connection terminal
3	FC12	Error amplifier output terminal	17	PGND33	Power GND (the same potential as terminal GND)
4	SS12	12V soft start adjustment capacity connection terminal	18	SS33	3.3V soft start adjustment capacity connection terminal
5	PGND12	GND(0V connection)	19	V33	3.3V output voltage detection terminal
6	SW12	12V coil connection terminal	20	TEST3	Test terminal 3 (It uses it by the open usually.)
7	TEST2	Test terminal 2(0V is connected and use it usually).	21	SGND	Sense GND(the same potential as terminal GND)
8	CTL1	3.3V output control terminal	22	MV5	-5V regulator output terminal
9	VIN	Power supply input terminal	23	MV8	-8V charge pump output terminal
10	GND	GND(0V connection)	24	СМ	Capacity connection terminal for charge pump $(-)$
11	RT	Frequency adjustment resistance connection terminal	25	PGNDV8	Power GND (the same potential as terminal GND)
12	PVIN	Power supply input terminal for PowerTr (=VIN)	26	CP	Capacity connection terminal for charge pump (+)
13	CTL3	-5V output control terminal	27	V8	8V regulator output terminal
14	CTL2	12V output control terminal (*12)	28	V12IN	LDO12V voltage input terminal

*12 H->L (ON->OFF) control, When CTL3=L. (Refer to NOTE ON USE-13)

◎PACKAGE OUTLINE

VREG BG VIN V12IN OVP PON PVIN ٧ß ┡ D R V SW33 osc Ţ V8IN OSC CF V33 PON,LVP,OVP PGND33 Charge Pump Cntorol PGNDM SEQUENCER Ŧ SS33 CN -11-V33 MV8 ₩ ≸ ‴ PGND12 MV8IN MV5 PON,LVP,OVP D R V SW12 MV5 osc Ò ∱_{BG} TSD FC12 CTL1 $\frac{1}{2}$ FB12 CTL2 Щ CTL3 1 V12 PON,LVP,OVP SS12 _**-∎** ↓ ₩↓ ★ RT osc osc V12 TSD TEST3 SGND GND TEST TEST

Fig.-1 PACKAGE OUTLINE

Fig.-2.BLOCK DIAGRAM

◎ NOTE ON USE

1. About the absolute maximum rating

Attention is brushed off enough to the quality control, it is likely to destroy when the absolute maximum rating such as impressed voltages (VCC_IN,DCIN) and ranges (Topr) of the operating temperature as it is exceeded, the mode of breakings of the short or the opening, etc. cannot be specified, and examine it in this IC to give physical measures for safety such as fuses when a special mode that exceeds the absolute maximum rating is assumed.

2. About the reverse-connection of the power supply connector

IC might destroy it by reversely connecting the power supply connector. Give measures such as putting the diode between power supply terminals of power supply and IC outside for the reverse-touching destruction protection.

3. Power supply line

Please do measures such as putting the bypass capacitor in power supply-GND nearest pin of this IC as the route of the resurrection current to cause the return of the current in which it resurrected it by the counter electromotive force of the coil.

Please confirm the characteristic of the electrolytic capacitor enough as the capacity omission etc. at the low temperature never happen, and decide it.

4. About grand potential

Any state of operation must become the lowest potential about the potential of the terminal GND. Moreover, confirm whether there is terminal that is actually the voltage of GND or less including transients.

- 5. About the heat design
- Think about permissible loss (Pd) in an actual state of use, and do the heat design with the margin enough.
- 6. About the short and the miss-installation between terminals

Note the direction and the miss-registration of IC enough when you install it in the set substrate. IC might destroy it as well as reversely connecting the power supply connector when installing it by mistake. Moreover, there is fear of destruction when the foreign body enters between terminals, the terminal, the power supply, and grandeur and it is short-circuited.

7. About operation in strong electromagnetic field

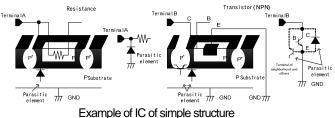
In use in strong electromagnetic field, note that there is a possibility of malfunctioning.

8. About the capacitor during output-GND

The current charged the capacitor with when VCC is 0V or is GND and is short-circuited when a big capacitor is connected between GND output by some factors flows into the output and it is likely to destroy it. Give the capacitor between GND output to 0.1µF or less.

9. About the inspection by the set substrate

It is likely to suffer stress to IC and discharge electricity every one process when you connect the capacitor with the pin with low impedance when inspecting it in the set substrate. Moreover, detach it after connecting after the power supply is turned off without fail when detaching it to G in the inspection process, inspecting, and turning off the power supply. n addition, be give the earth to the assembly process as a static electricity measures, and careful enough when it transports and you preserve it.


10. About each input terminal

This IC is a monolithic IC which has a P⁺ isolations and P substrate to isolate elements each other.

This P layer and an N layer in each element form a PN junction to construct various parasitic elements.

For instance, the potential difference operates in resistance as shown in the figure below when resistance and the transistor connect it with the terminal and the playground (GND) >(terminal B) joint of PN operates as a parasitic diode in playground (GND) >(terminal A) transistor (NPN). In addition, the NPN transistor of parasitism works with N layer of the element of the above-mentioned parasitic diode and the neighborhood and others in transistor (NPN). A parasitic element in IC composition is inevitably formed because of the potential relation.

A parasitic element can operate, the interference with the circuit operation be caused, it malfunction, and, consequently, it cause destruction. Therefore, do not do the usage that a parasitic element operates as a voltage that is lower than the playground (GND;P substrate) is impressed to the input terminal enough. Moreover, do not impress the voltage to the input terminal when you do not impress the power-supply voltage to IC. Give each input terminal to me the voltage below the power-supply voltage or in the guarantee value of an electric characteristic when you similarly impress the power-supply voltage.

11. Earth wiring pattern

If small signal GND and large current GND exist, disperse their pattern. In addition, for voltage change by pattern wiring impedance and large current not to change voltage of small signal GND, each ground terminal of IC must be connected at the one point on the set circuit board. As for GND of external parts, it is similar to the above-mentioned.

12. Thermal Shut-Down

When a thermal shutdown operates, the DC/DC converter controller of all Ch is turned off. When a thermal shutdown is released, the DC/DC converter controller of all Ch becomes an operation beginning from turning off.

13. DC/DC converter control terminal (CTL1,2,3)

This IC has 3 output voltage (3.3V,12.0V,-5.0V). When you turning off control 12.0V output from all output ON(CTL1,2,3=H) time with the terminal CTL2, please control 12.0V output turning off with the terminal CTL2 after 200µs or more has passed by the terminal CTL3 since -5.0 the V output was turning off controlled.

	Notes
	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conten	t specified herein is subject to change for improvement without notice.
"Products")	It specified herein is for the purpose of introducing ROHM's products (hereinafte b. If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein e standard usage and operations of the Products. The peripheral conditions mus to account when designing circuits for mass production.
However, s	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such , ROHM shall bear no responsibility for such damage.
examples of implicitly, a other partie	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o ny license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment	ets specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu vices, electronic appliances and amusement devices).
The Produc	ts specified in this document are not designed to be radiation tolerant.
	M always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of ar shall bear r	sure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the product, such as derating, redundancy, fire control and fail-safe designs. ROHM responsibility whatsoever for your use of any Product outside of the prescribed of in accordance with the instruction manual.
system whi may result instrument fuel-contro any of the F	cts are not designed or manufactured to be used with any equipment, device or ch requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica , transportation equipment, aerospace machinery, nuclear-reactor controller ller or other safety device). ROHM shall bear no responsibility in any way for use of Products for the above special purposes. If a Product is intended to be used for any al purpose, please contact a ROHM sales representative before purchasing.
be controlle	d to export or ship overseas any Product or technology specified herein that may ed under the Foreign Exchange and the Foreign Trade Law, you will be required to ense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/